The Road to 450 mm Semiconductor Wafers

Ira Feldman
Feldman Engineering Corp.
Overview

- Why 450 mm Wafers?
- Technical Challenges
- Economic Challenges
- Solutions
- Summary
the number of transistors on a chip will double approximately every two years ...
The experts look ahead

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore
Director, Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp.

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year (see graph on next page). Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000.
\[A = \pi r^2 \]

\[r' = 1.5r \]
\[A' = 2.25A \]

If cost' = 1.125 cost

\[
\frac{\text{cost'}}{\text{A'}} = 0.5 \]
\[
\frac{\text{cost}}{\text{A}} = 0.5
\]

Economics again!

If the total incremental cost of manufacturing a wafer 1.5 times the previous size is held to 12.5%, the cost per area for the larger wafer is half.

\[\approx 1 \text{ process node} \]

Intel 200 \(\rightarrow \) 300 mm

> 30% per die cost reduction
The 450 mm wafer time-line

- Constructive Dialogue begins
- Real Silicon becomes available
- First equipment prototypes emerge
- Production equipment available
- Fabs begin to emerge

Dean Freeman, “The Shift to Mobility”, SEMI SV Lunch Forum, April 19, 2012
TECHNICAL CHALLENGES
Prober - Direct Scale Up?

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>1450 w x 1775 d x 1420 h mm</th>
<th>Dimensions</th>
<th>2175 w x 2663 d x 1420 h mm</th>
<th>Weight</th>
<th>1500 kg</th>
<th>Weight</th>
<th>3375 kg</th>
</tr>
</thead>
</table>

1.5x
WIP / Cycle Time Impact

Test time per wafer (hr)

0.25
0.50
1.00
2.00
4.00

300 mm examples

“Half Boat” Candidates

8 hour shifts per FOUP

Wafers per FOUP

June 10 - 13, 2012

IEEE Workshop
WIP / Cycle Time Impact

“Half Boat” Candidates

Test time per wafer (hr)

450 mm – examples – 300 mm

8 hour shifts per FOUP

Wafers per FOUP

June 10 - 13, 2012 IEEE Workshop
Very Large Printed Circuit Boards (PCB)

- Current DRAM tester: 300 mm (17.3 in), 440 mm (17.3 in)
- Same connector area width: 450 mm (17.7 in), 590 mm (23.2 in)
- Connector area increased by 2.25x for additional signals: 450 mm (17.7 in), 660 mm (26.0 in)
Probe Force

- **FormFactor**
 - 1.6gF/mil @ 4mil
- **FormFactor**
 - 1gF/mil @ 3mil
- **Touchdown, Microfabrica & others**
 - ~2 gF
- **Current High Force Probers**
- **Cascade Microtech**
 - ~1 gF

Operational probe movement

Probe card operating range

Change in Temperature (ΔT), °C

Change in Position, µm

Please see notes on next page
• **Assumptions & notes**
 – Wafer chuck & wafer are at desired temperature
 • Stable due to active thermal management of chuck.
 • Wafer heats up “instantly” due to low relative thermal mass and pre-heating.
 – Calculations are worst case at wafer edge r=225 mm
 – Probe movement is predominantly thermal movement of probe card
 • Probe card heats and cools as heat source (chuck) moves away to perform operations unless active thermal management is implemented.
 • Different stiffener / structural materials are listed.
 • Actual coefficient of thermal expansion (CTE) of probe card typically higher due to high CTE of PCB and other materials.
 – First order calculations of thermal positioning effects in plane (X & Y) only, there are significant other factors including movement of probe card in Z, warping, and thermal stress that need to be considered.

• **Calculations**
 – First order thermal movement of probe at edge of probe card (worst case):
 • Delta Probe Position = r * delta Temperature * CTE
 – Operating range:
 • Delta Temperature = (maximum hot temperature – maximum cold temperature) / 2
 • Example: hot = 100 C, cold = -20 C => delta T = 60 C, card designed scaled for nominal 40 C.

• **Recent papers addressing thermal movement include**
 – Daniels – Texas Instruments SWTW 2011
 – Lee – GigaLane SWTW 2011
 – Breinlinger – FormFactor SWTW 2009
 – Boehm – Feinmetall SWTW 2009
 – Harker – FormFactor SWTW 2009
ECONOMIC CHALLENGES
OPEX + CAPEX → £/die
Serial Fab Processes:

- Photolithography reticle stepping
- Ion Implantation
- Metrology & inspection
- Non-full wafer test
Larger Probe Cards =
• Higher Material & Processing Costs
• New NREs
• New Equipment

Yield – larger area requires lower defect density or cost effective rework.

Feldman SWTW 2011
Intel made it simple last time:

Relative Capital Cost ≤ 1.3
Relative Footprint ≤ 1.0

\[
\text{Relative } X = \frac{X(300)}{X(200)} \cdot \frac{\text{Output Capacity}(200)}{\text{Output Capacity}(300)}
\]

Seligson

Figure 2: The macro view of the 300mm vision in which 200mm and 300mm factories are compared
<table>
<thead>
<tr>
<th>Development Cost</th>
<th>Total Investment</th>
<th>Time to Recover Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>300mm</td>
<td>$12B</td>
<td>14 yrs</td>
</tr>
<tr>
<td>450mm</td>
<td>$15B - 20B</td>
<td>?? yrs</td>
</tr>
</tbody>
</table>

Synchronized Roadmap and ROI Cadence are critical.

1 Source: VLSI Research 2006
2 Source: Applied Materials estimate
For extreme diseases, extreme methods of cure, as to restriction, are most suitable.

Hippocrates
ca. 460 – 370 BCE
Possible Solutions

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Research & Development</th>
<th>Short Term (delayed investment)</th>
<th>Long Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Fab</td>
<td>In Process / Parametric</td>
<td>Semi-automatic probe station</td>
<td>Flying probe</td>
<td>Super-sized wafer prober</td>
</tr>
<tr>
<td>Post Fab</td>
<td>Single to medium multisite</td>
<td>Quartered wafers</td>
<td>Reconstituted wafers</td>
<td>Super-sized wafer prober</td>
</tr>
<tr>
<td></td>
<td>Full wafer contact (1-10? TDs)</td>
<td></td>
<td></td>
<td>Test in Tray</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simplified prober / restricted movement</td>
</tr>
</tbody>
</table>
Flying Probe for In Process
Possible Solutions

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Research & Development</th>
<th>Short Term (delayed investment)</th>
<th>Long Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Fab</td>
<td>In Process / Parametric</td>
<td>Semi-automatic probe station</td>
<td>Flying probe</td>
<td>Super-sized wafer prober</td>
</tr>
<tr>
<td>Post Fab</td>
<td>Single to medium multisite</td>
<td>Quartered wafers</td>
<td>Reconstituted wafers</td>
<td>Super-sized wafer prober</td>
</tr>
<tr>
<td></td>
<td>Full wafer contact (1-10? TDs)</td>
<td></td>
<td></td>
<td>Test in Tray</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simplified prober / restricted movement</td>
</tr>
</tbody>
</table>
Quarter the Wafer?

D=450 mm
Issues:
• Equipment (prober) compatibility
• Lost die
• Inefficient utilization
• Four different step / probe patterns for high parallelism probing

D=300 mm

Lost Die
Reconstituted partial “wafer”

Dice arrayed in efficient probing shape on 300 mm film frame
Possible Solutions

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Research & Development</th>
<th>Short Term (delayed investment)</th>
<th>Long Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Fab</td>
<td>In Process / Parametric</td>
<td>Semi-automatic probe station</td>
<td>Flying probe</td>
<td>Super-sized wafer prober</td>
</tr>
<tr>
<td></td>
<td>Single to medium multisite</td>
<td>Quartered wafers</td>
<td>Reconstituted wafers</td>
<td>Super-sized wafer prober</td>
</tr>
<tr>
<td></td>
<td>Full wafer contact (1-10? TDs)</td>
<td>Reconstituted wafers</td>
<td>Reconstituted wafers</td>
<td>Test in Tray</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simplified prober / restricted movement</td>
</tr>
</tbody>
</table>
Test-in-Tray
Centipede Systems’ FlexFrame

Reusable tray
Example devices:
 64 die per tray
 7.2 mm x 8.3 mm
 50 µm Al pads

Centipede Systems
See also: Test in Tray: Thomas Di Stefano - BiTS 2012
Possible Solutions

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Research & Development</th>
<th>Short Term (delayed investment)</th>
<th>Long Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Fab</td>
<td>In Process / Parametric</td>
<td>Semi-automatic probe station</td>
<td>Flying probe</td>
<td>Super-sized wafer prober</td>
</tr>
<tr>
<td>Post Fab</td>
<td>Single to medium multisite</td>
<td>Quartered wafers</td>
<td>Reconstituted wafers</td>
<td>Super-sized wafer prober</td>
</tr>
<tr>
<td></td>
<td>Full wafer contact (1-10? TDs)</td>
<td></td>
<td></td>
<td>Test in Tray</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simplified prober / restricted movement</td>
</tr>
</tbody>
</table>
Chuck Area

Minimum chuck area is approximately:

D = 300 mm → 636 mm sq.
D = 450 mm → 955 mm sq.

to reach center of head plate opening with all die, sub-chuck, & camera.
Full Wafer Contactor Prober?

Prober designed for use with full wafer contactors (FWC) such as 1 TD or “rainbow” probe cards.

Restricted movement to +/- 50 mm Y, +/- 10 mm X?
Future Test Cell?
Summary

• Some challenges are 1.5x others are 2.25x

• Multiple solutions to technical challenges for R&D, short term, and long term
 – Need to plan accordingly

• Largest challenge is financial
 – Need right solution for each problem with proper return on investment (ROI)
 – Don’t want to over invest or “miss the boat”

• Inflection point enables innovation
450 mm

300 mm
Acknowledgments

• Accretech
• Applied Materials
• Cascade Microtech
• Centipede Systems
• FormFactor
• Micronics Japan Co. (MJC)
• Multitest
• SPEA
• Tokyo Electron
Thank You!

Ira Feldman
ira@feldmanengineering.com

Visit my blog
www.hightechbizdev.com
for my summary of SWTW
References

- “Cramming more components onto integrated circuits”, Gordon E. Moore, Electronics, Volume 38, Number 8, April 19, 1965. http://j.mp/ICfrn9